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Exact eigenvalues of the Hamiltonian P2 +A 1Xl”i 
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Federal Republic of Germany 

Received 14 August 1978, in final form 16 October 1978 

Abstract. The correspondence between operators on a Hilbert space and phase-space 
functions based upon symmetric ordering. introduced by Cahill and Glauber (We);: 
correspondence) is used in the present paper to define (non-linear) unitary transformations 
for quantum systems with the help of canonical transformations, which are bijective, i.e. 
one-to-one onto. These unitary transformations can be used to determine exactly the 
energy eigenvalues of a large class of one-dimensional quantum systems. As an example we 

a, v > 0 .  
have calculated the exact eigenvalues of the Hamiltonian H ( X ,  P) = &P2+ ;X~“), 

1. Introduction 

In classical mechanics one can make a transformation from the canonical coordinate 
and momentum x ,  p to a new set of variables X, p, satisfying the same Poisson-bracket 
relations as the x’s and p’s ,  and can express all dynamical variables in terms of the 2’s 
and p’s .  These so-called canonical transformations are a powerfu! tool for studying the 
dynamic of any classical system (e.g. Goldstein 1963). In quantum mechanics the 
dynamic of a system is completely known if the eigenvalue problem of its Hamiltonian 
has been solved. This diagonalisation can be achieved by a unitary transformation from 
the canonical coordinate and momentum operators X and P to a new set of operators x, p, satisfying the same commutator relations as the X’s and P’s. Now there is some 
physical feeling that for a quantum system that has a classical analogue, unitary 
transformations in the quantum theory are the analogue of canonical transformations in 
the classical theory (see e.g. Dirac 1958). While the situation with the representation of 
groups of linear canonica! transformations by groups of linear unitary transformation in 
quantum mechanics (rotation or permutation of coordinates) was clarified, it remained 
more obscure in the more genera! case, in which the ne” coordinates and momenta are 
(non-linear) functions of both the old. A detailed discussion of the problems involved in 
the nonlinear case may be found in a paper of Kramer et a/  (197s). Here we only want 
to stress the following: The operators X ,  P and x, may have different spectra, as 
happens for example in the trivial non-linear point transformatior, X = x2,  showing that 
there exist canonical transformations, which cannot have a unitary representation in 
quantum theory, because unitary transformations p:eserve the spectra of the operators. 

We therefore look foi- a certain class of canonical transfo;mations which we can 
use to define unitary transformations. This class consists of bijective canonical 
transformations, i.e. mappings of thc phase-plan6 one-to-one or,to itself. To relate 

t This work was performed withii: a projec! of the Sonderforschungsbereich 65 Darmstadt-Frankful t .  
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phase-plane functions f ( x ,  p )  to operators we use the correspondence based upon 
symmetric ordering introduced by Cahill and Glauber (1969) (Weyl correspondence), 
which is outlined in § 2. These unitary transformations, explicitly defined in § 3 ,  can be 
used to determine the eigenvalues of a large class of Hamiltonians (e.g. H ( X , P ) =  
&,(P2+AIXI"), A ,  Y > O ) ,  which will be discussed in § 4. 

2. Weyl correspondence 

Let us begin by establishing a relation between operators on the Hilbert space X") of 
one particle without spin? and functions f ( x ,  p )  on the (x, p )  plane. Following Cahill 
and Glauber (1969) we define the Hermitian operator 

T ( a )  = 2 D ( a ) ( - 1 y c a D ( - a )  (2.1) 

D ( a )  = exp(au+ - u * u ) ,  a complex number (2.2) 

where D ( a )  is the displacement operator, introduced by Weyl (1950) 

and (-l)"+" the parity operator 

The operators T ( a )  possess the same type of completeness as do the unitary 

(2.4) 

operators D ( a )  (Cahill and Glauber 1969) 

Tr[T(a)T(p) ]  = ~ - 6 ' ~ ' ( a  - p )  = Tr[D(-a)D(P)]. 

Therefore we may expand any Hilbert-Schmidt$ operator F in the form (a  = 
(2h)-"2(Ax + iA-'p), A real parameter, different from zero) 

( 2 . 5 ~ )  

where the functions f ( x ,  p ) ,  which are given by the traces 

fah, P )  =Tr[FT(a)I 

f b ( X ,  P )  =Tr[FD(a)I  

are unique and square-integrable 

( 2 . 6 ~ )  

(2.66) 

t To be more precise E''' is a representation space, carrying an irreducible unitary representation of the 
Heisenberg-Weyl group, the corresponding Lie algebra of which is generated by the operators a, a+ and 1, 
satisfying [a, a']  = 1. 
$ We shall say that an operator is an Hilbert-Schmidt operator if its Hilbert-Schmidt norm IIFIJ = (Tr F'F)"' 
is finite. 
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As was shown by Cahill and Glauber (1969) the correspondence 

F(X, P)-fOlb, p )  (2.8) 

is based upon the concept of symmetric ordering of operators and is called Weyl 
correspondence in the literature. Its advantage is that it can be used for a much larger 
class of operators than is the class of Hilbert-Schmidt operators, for example 

a - a  ( 2 . 9 ~ )  

a+-a* (2.9b) 

:(a+a + aa+)-laI2 ( 2 . 9 ~ )  

H ( X ,  P )  = &P’+ V ( X ) - h ( x ,  p )  =&p’+ V ( x )  (2.9d) 

T ( P )  - xs‘2’(a - P ) .  (2.9e) 

3. Definition of unitary transformations 

The class of Hilbert-Schmidt operators IF): spans a Hilbert space %(2) ,  if one uses the 
following inner product 

(FIG) = Tr[F’G]. (3.1) 

The vectors I C Y )  = IT(a))-though not elements of 3r?e‘2’$-form an orthonormal 
system in the sense that any vector IF) E 2‘’) can be expanded (see equation ( 2 . 5 ~ ) )  as 

with 

(3.3) 

Let us now define the following linear operator U on X‘*’ 

( / ICY)  = I & )  (3.4) 
where CU = G ( x ,  p )  is a bijective canonical transformation, i.e. a mapping of the 
phase-plane ( x ,  p )  one-to-one onto itself, with 

or equivalently 

d2a = d2G (3 .5b )  

U is defined on the whole space 2”’ and is a mapping onto 3r?Lp(z’. Obviously there exists 
the adjoint operator U’ of U which is defined on the whole space X”)  and is a mapping 

t In this section we use a ‘Dirac notation’ to emphasise that we regard the operators F as elements of a linear 
space. 
’& The vectors la) are Dirac ‘kets’ referring to the space %!” in the same sense as being e.g. the eigenkets ip )  of 
the momentum operator P Dirac vectors referring to %!I!, 
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onto %'e(2) as well. Now U' is isometric: 

(U'FI U'G) 

= [ $(U+FIa)(aIU+G) 

Therefore-together with the above mentioned properties of U and U'-it follows 

As a trivial example we take the following linear transformation 
that U and U' are unitary operators on XL4(2) .  

CU = exp(i#)a 

or 

I = cos 4 x  - A  -2  sin 4 p  
p = A'sin 4 +cos q5p. 

(3.7) 

(3 .7u)  

(3 .7b)  

Equation (3.7) describes a rigid rotation of the phase plane about an angle 4, which 
is obviously a bijective canonical transformation. It holds 

IX) = UJX) 

(a  + a *; Ula)  

(exp(-i4)& + exp(id)E*)lci) 

- r d 2 a  ( 2 ~ 2 ) " ~  
- i  T2h 

IT 2A 

=cos 4 1 X ) + K 2  sin 4 lP)  

and analogue 

IF) = - A 2  sin 4 jX)+cos  dip) .  

( 3 . 8 ~ )  

(3 .86)  

4. Exact eigenvalues of Hamiltonians 

'#e want to show now how the general formalism introduced in the two preceeding 
sections can be applied to solve concrete physical problems. First we note that the 
eigenvalue problem of the number operator N = u+u is completely known: 

To find the operator F ( N )  corresponding to a given function f ( la  1 2 )  by symmetric 
ordering (Weyl correspondence; see equations ( 2 . 5 ~ )  and (2.8)), we first define the 
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Laplace transform w (s) of f(la 1 2 )  t 

d(la12) exp(-slaI2)f(lal2) 

f(l.1 )=- J ds exp(sla12)w(s) 
x+im 

27ri x-ico 

and use now the following formula (Cahill and Glauber 

Thus we find 

s = x + i y  

1969): 
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( 4 . 2 ~ )  

(4.2b) 

(4.4) 

which states the following: 

by symmetric ordering- are 
The eigenvalues F ( n )  of the operator F(N)-corresponding to the function f(la 1 2 )  

F ( n )  = - n = 0, 1 ,2 ,  . . . (4.5) 

with w ( s )  given by equation ( 4 . 2 ~ ) .  
Evaluating the integral (4.5) we find 

(4.6) 

Now the usually given physical Hamiltonians do not have the functional dependence 
F (N) -excep t  the linear harmonic oscillator. But for a certain class of operators H we 
can use a unitary transformation U to relate a given Hamiltonian H = H(a ,  a') from 
this class to an operator H = H ( N )  as follows: 

(4.7a) 

with Li defined by equations (3.4) and (3.51, especially holds 

UU' = U'U = 1 on ze"'. (4.76) 
Because of equations (4.7) H and fl are unitarily equivalent and have equal eigen- 
values. To determine therefore the eigenvalues of H we notice that the curves of 

t In the following it is assumed that the mathematical statements leading to equation (4.6) are well-defined, 
which is of course a condition upon the functions f and F. 
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constant value of the Hamiltonian function 6(1512) are circles around the origin in an E 
phase-plane. We can now state the following: 

A class of Hamiltonians, whose eigenvalues can exactly be calculated by equation (4 .9 ,  
consists of operators H, whose curves of constant value of the corresponding Hamil- 
tonian function h(a ,  a*)  are the pictures in the a plane of concentric circles in the 6 
plane by a bijective canonical transformation a = a (5, 5*). 

To construct the unknown Hamiltonian function 6(l5I2) for a given Hamiltonian 
function h ( x , p ) ,  we proceed along the lines of classical physics, and use the action 
variable g ( E ) :  

1 1 
9 ( E )  =- p ( x ;  E )  dx =-((A2f2+A-2p2) = 

277A h ( x , p ) = E  2A (4.8) 

Equation (4.8) defines l5I2 as a function of E, which relation gives us the desired 
function 6 by inversion 

E = K(l6l2). (4.9) - 
For illustration let us now calculate the eigenvalues of the following class of 

H(X,  P )  = & ( P 2 + ~ “ “ + 2 ’ I X ~ “ )  a, v > o .  (4.10) 

The paths in the (x, p)-plane defined by p 2 +  ut iV+2) (x IY  = 2mE are closed curves, 
and are the pictures of concentric circles by a bijective canonical transformation. We 
find 

Hamiltonians: 

l6I2 = 9 ( E )  = - J dx (2mE-~”lx1”)”~  
277h h I x . p ) = E  

- - 
h 

or 

with 

Laplace transformation of equation ( 4 . 1 2 ~ )  yields 

(4.11) 

(4.12a) 

(4.12b) 

(4.13) 

Now we can use equation (4.6) and get for the eigenvalues Ei”’(n) of the Hamil- 
tonian (4.10): 

2 ” / (  Y + 2  ) (-1)” d” ( ( 2 - t ~ ) “  
s = 2  

(4.14) 
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5. Conclusions 

Using the Weyl correspondence between operator functions F(X,  P )  and c -number 
functions f ( x ,  p )  we have succeeded in defining non-linear unitary transformations with 
the help of bijective canonical transformations. By these unitary transformations we 
were able to derive a formula for the exact eigenvalues E ( n )  of a large class of 
Hamiltonians H ( X ,  P )  (see equation (4.5)): 

E ( n )  =- 

By expanding the square root and the logarithmic function in the exponent of the 
integrand we arrive in a first step at the well-known WKB approximation, often used in 
the literature in deriving energy eigenvalues: 

x t1m 

E ( n )  =- I ds e x p [ ( n + $ ) s ] w ( ~ ) = h ( 1 c i 1 ~ = n + i ) = E ~ ~ ~ ( n ) .  
21ri x- im 

(5.2) 

Thus we are able to test the WKB approximation (5.2) by the exact values (5.1) for 
the class of systems, described in § 4. 

Our further studies shall be to extend formula (5.1) to other classes of potentials 
such as V ( x )  = (x2- 1)2, the eigenvalues of which are important in the theory of 
structural phase transitions. The eigenvalues of potentials like V ( x )  = (x2 - 1)’ will be 
discussed in a further paper. 
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